Question 1:

You are a scientist studying protein structure, function and interactions. You have access to X-ray crystallography, NMR and cryo-EM to solve some interesting problems from the world of protein biochemistry. Which of the 3 methods would you choose for each problem and why?

a) You are studying a protein receptor on cell surface (MW=150 kDa) as a potential drug target. Through cycles of drug discovery, you identified that ligand X binds to your cell receptor and exerts the desired functional effect (i.e., inhibiton of downstream signaling). Which method would you use to study the molecular details of ligand-receptor interactions?

We want to identify how a ligand interacts with the binding pocket of the protein. We can apply both X-ray crystallography and Cryo-EM on the the receptor-ligand complex. We cannot use NMR due to the size of the protein (150kDa).

b) In the pandemic time, scientists are intrigued by how the spike protein looks like on the virus particle itself in its native state. You decide to utilize the available facilities and expertise to answer that question. How would you solve the structure of the full COVID- 19 virus, knowing that it's molecular weight is approximately ~40MDa and the virus is pleomorphic (i.e., individual virions vary in size and shape)?

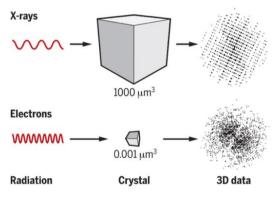
Cryo-EM is the best suited method for large particles like viruses, particualrly if they are pleomorphic. In the case of highly homogenous and symmetrical viral particles (e.g., poliovirus, dengue) the structural analysis can be performed using X-ray crystallography, but not for pleomorphic virions. NMR cannot be used for direct structural analysis due to the high molecular weight of the viral particle.

c) You have a protein with molecular weigh of 20 kDa, which interacts with ligand Y through a known mechanism and a well-stablished binding site (pocket). You would like to introduce point mutations in the pocket that disrupt the binding to this molecule. What structural methods could you use to assess how these mutations influence the ligand binding pocket?

Given the size of the protein and focus on protein-ligand interactions NMR is a suitable method, but you can also use X-ray crystallography. NMR may be a bit more versatile as it does not require the protein to be crystallized and can provide further information on protein stability and kinetics of binding (equilibrium constant) to the ligand by simply titrating the defined amounts of the ligand into the NMR tube with the protein. cryoEM cannot be used due the the relatively small size of the protein.

d) You are trying to solve a structure of a protein (MW ~200kDa) which aggregates in solution at concentrations above 0.5 mg/ml. What method would be the most applicable in this scenario?

We cannot use X-ray crystallography since the protein aggregates at relatively low concentrations. We need to have the protein as an ordered crystal, not a disordered aggregate. NMR is also not applicable due to the high MW. Cryo-EM will not be limited by the MW or low concentrations and is therefore the most appropriate method for this problem.


Question 2:

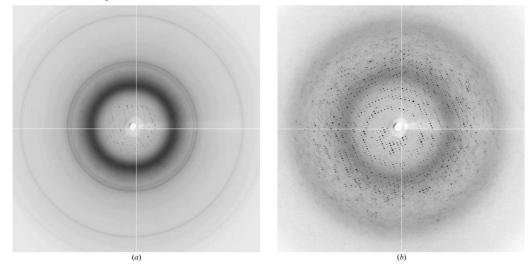
X-ray diffraction is one of the main methods for determination of macromolecular structures from crystals. However, there are some potential alternatives within the electromagnetic spectrum and within the subatomic particle space. Let's explore their applicability to this problem.

- a) Microwave radiation Can it be used in crystal diffraction experiments and allow to achieve atomic resolution? Explain.
- b) Gamma radiation Gamma (rays) have smaller wavelength compared to X-rays, and therefore a much lower diffraction limit. In theory, the maximum achievable resolution when using these rays would be superior. However they are not used for determination of biomolecular structures. Why do you think that is? Also, practically speaking, where could you perform such experiments?
- c) Electrons Can we use accelerated electrons instead of X-rays for crystal diffraction experiments? Do you think that crystal size would be an important factor for feasibility? Explain.

Answers:

- a) Per Abbe's law the maximum achievable resolution when using microwave radiation in microscopy or diffraction experiments would be in the milimeter range.
- b) Indeed this is theoretically feasible. However, the problem with gamma rays is that they are high frequency which means that they have high energy. Therefore, their scattering by biomolecular material would be even weaker compared to X-rays and the rate at which they would destroy the sample would be much faster. The most notable man-made sources of gamma rays are nuclear fission events, so the experiment would have to be performed in a nuclear research facility or a reactor.
- c) This is possible and it is actually used by many scientists in the world. Just like in X-ray crystallography, electron diffraction involves the scattering of electrons by the biological sample in a crystalline form. The elastically scattered electrons can be used to generate a diffraction pattern, from which the structure can be calculated. For this to work, the sample needs to be crystalline in nature. The crystalline form of the protein amplifies the diffraction signal, as scattered electrons interfere with each other, increasing the signal's intensity. However, electrons interact with matter much better than X-rays and there is a major issue with inelastic and dynamical scattering (dynamical = multiple elastic scattering events while electron travels through the crystal). Therefore, the crystals used for electron diffraction need to be much smaller in size. Hence the name microcrystal electron diffraction (microED) for this method.

Question 3:


Multiple choice questions of Cryo-Electron Microscopy:
1. During EM, a vacuum is created inside the a) room of operation b) specimen c) microscope d) objective lens system
Answer: c) Microscope. Vacuum is needed to prevent the electrons form interacting with air molecules
 2. Which of the following component of EM collects the beam of electrons from the source and directs it towards the sample? a) ocular lens b) condenser lens c) stage d) projector lens Answer b) condenser lens collects electrons and assures that the beam is parallel to the
optical axis of the instrument and directed to the sample.
3. Image formation in electron microscope is based on a) column dimensions b) objective aperture size c) differential electron scattering d) specimen size Answer: c) Differential scattering of electrons from protein compared to surrounding ice is what
generates contrast.
4. The biological materials have little intrinsic capability to scatter electrons compared to water/ice which is why it is essential to have a) low voltage in the microscope b) highly focused beam from the condenser lens c) thin ice layer surrounding the biomolecule d) very steady stage with minimal drift Answer c) The density of protein is slightly higher compared to water, which is why thin ice surrounding the sample is necessary to have contrast.
5 is the capacity to distinguish between two adjacent atoms or groups. a) Magnification b) Resolution c) Ionization d) Division Answer: b) Resolution
6. How is resolution calculated in cryo-EM? a) Fourier Shell Correlation of half-sets b) Contrast Transfer Function c) R-factors

d) Model-to-map agreement

Answer: a) The curve based on Fourier Shell Correlation of 2 half-sets is used to define the resolution in cryoEM experiments.


Question 4:

1) Below 2 pictures of X-ray diffraction pattern for the same protein. Which one has higher resolution? Why?

Answer:

- b) has higher resolution because there are more spots that are further from the center.
- 2) Below is the overlay of 4 FSC curves obtained by electron mciroscopy analysis of different proteins (1-4). The gold-standard line is shown in black. From these plots, estimate the resolution of each protein reconstruction and rank the maps from highest to lowest quality (in terms of resolution)?

Answer:

Looking at the intersection of the gold-standard line and each FSC curve we come up with these numbers:

Protein 1 ~3.0Å

Protein 2 ~2.6Å

Protein 3 ~2.4Å (slightly higher resolution than Protein 4)

Protein 4 ~2.4Å

In terms of quality they are ranked form highest to lowest resolution:

Protein 3 - Protein 4 - Protein 2 - Protein 1

Note that "higher resolution" means lower number because the amount of detail is greater.

Question 5:

Below are 5 maps of the same protein obtained by cryo-EM. The maps are presented as transparent gray surface and the corresponding model of the protein is shown with different domains colored in green, blue and red. The maps are all at different resolutions.

- a) Can you rank the maps from highest to lowest resolution? Optional: Try to estimate the resolutions by comparing the level of detail in each map to the underlying protein models.
- b) Which of the map(s) have sufficient quality to reliably place amino-acids into density?
- c) Which of the map(s) only offer information on the level of protein domain but do not have sufficient resolution to accurately build amino-acids or secondary structure elements?

Map 1	Map 2	Map 3	Map 4	Map 5

Answers:

a) The ranking is as follows:

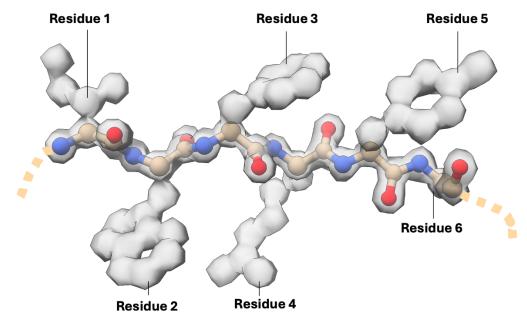
Map 4: Res=3Å Map 2: Res=5Å Map 1: Res=10Å Map 3: Res=15Å Map 5: Res=20Å

The resolutions are provided just to illustrate how the numbers correlate to visual appearance of cryo-EM maps. This is hard to estimate visually, but it is good to have some idea of what different resolution values mean in terms of map quality and interpretability.

- b) If you look carefully the two highest resolution maps (4 and 2) you will see the small side chains densities extending from the secondary structure elements (e.g., helices). Therefore, in these two cases you could use the map density to place the side chains and build models. Practically speaking, this would be much easier and more reliable in Map 4 since the resolution is higher. Higher resolution in this case means that the side-chain densities are better defined which increases the placement accuracy.
- c) The resolution of Map 3 and Map 5 is too low to offer any interpretation on the atomic or amino-acid level. In fact, the density in these maps prohibits the analysis on the level of secondary structure because one cannot readily discern how different a-helices, b-strands or loops correlate to their locations in the density.

Question 6:

Jacques Dubochet, a Swiss scientist from Aigle, received the Nobel Prize in 2017 "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution". His contribution was the development of a method to rapidly freeze liquid protein sample in liquid ethane.

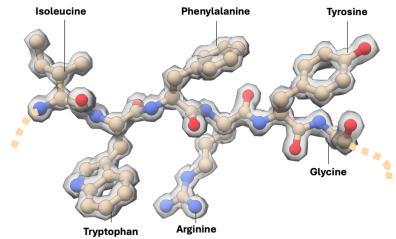

- a) Why does the protein sample need to be frozen for cryo-EM?
- b) Why does the protein sample need to be frozen rapidly in liquid ethane?
- c) It is common practice to wear masks while freezing grids and to dry all instruments that come into contact with the liquid ethane and nitrogen. Why?

Answers:

- a) The protein sample needs to be frozen to preserve the sample from radiation damage and to protect it from dehydration and evaporation in the vacuum of the electron microscope.
- b) Rapid freezing is required to obtain vitrified water without ice crystals. Only in vitrified water particles/proteins are clearly visible and can be imaged.
- c) Both procedures are performed to minimize the water contamination in the liquid ethane and nitrogen which can in turn lead to ice contamination on the grid. Areas with large ice contaminations cannot be imaged.

Question 7:

You have performed structural analysis of a new protein using cryoEM and recovered an excellent quality map that is at 1.5Å There are no previously published structures of related proteins and you have to build the atomic model from beginning. You arrive to this section of the map that consists of 6 connected amino-acids and you need to figure out which part of the protein it corresponds to. The polypeptide backbone is already included but the amino-acid identities (side-chains) are not known.

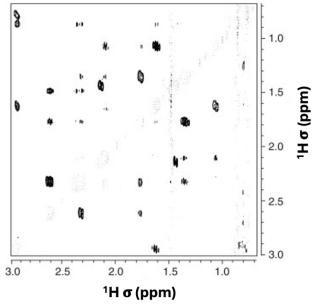


The sequence of the entire domain that also includes this region is:

----AFGRNTSWFRSSGIWFRYGTKEDGYYNPCLIHFNYRGSNTIWSRYGW----

Use your knowledge of amino-acid side-chains to infer which 6 consecutive amino-acids are shown in the map, and identify which section of the provided protein sequence it corresponds to. Note that at these resolutions you primarily see densities for heavy atoms (C, N, O) but not for hydrogens.

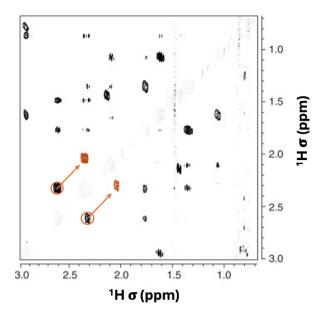
Answers:



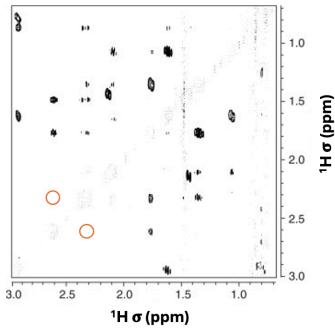
Based on the map density the inferred sequence of this region is "IWFRYG" corresponding to the red section of the protein sequence below:

----AFGRNTSWFRSSGIWFRYGTKEDGYYNPCLIHFNYRGSNTFRSRYGW----

Question 8:


You are interested in resolving a structure of a small Calcium-binding protein by NMR. You collected a ¹H-¹H NOESY spectra of the protein in the absence of calcium and it looks like this:

a) What do the peaks in the spectra correspond to? What do the peak intensities tell you about the corresponding ¹H atom pairs?


 1 H- 1 H NOESY experiments result in a set of peaks corresponding to pairs of hydrogen atoms that are in close proximity (<5Å) in 3D space. Each hydrogen atom in the pair will have a unique chemical shift (σ) which will be shown on X and Y axis for the first and the second hydrogen, respectively. The peak intensities depend on relative proximity of the two hydrogen atoms and will change dramatically with even small changes in distance (NOE signal $\sim 1/r^6$). The lower the intensity -> The greater the distance between hydrogens

b) Scenario 1: You added calcium to the protein and that resulted in shift of several peaks in the ¹H-¹H NOESY spectra (see below). What do you think is the explanation? Why did these ¹H exhibit a change in chemical shifts and others did not?

Chemical shits (σ) will change if there is a change of local chemical environment. In this case this is triggered by the addition of calcium which means that either (1) these hydrogen atoms (or the amino-acids they are a part of) are directly involved in the interaction with calcium ions, or (2) that calcium triggers some type of conformational change in the protein and indirectly changes the local chemical environment of these hydrogen atoms. The hydrogens that did not exhibit any change in chemical shifts are distal to calcium binding site and they do not experience any major changes in 3D assembly of the residues surounding them.

b) Scenario 2: You added calcium to the protein and that resulted in loss of several peaks in the ¹H-¹H NOESY spectra (see orange circles below). What do you think is the explanation? What is this reduction of peak intensity telling you about the corresponding ¹H pairs?

Peak intensities will change in NOESY spectra if the distances between the corresponding hydrogen pairs change. Given the sharp dependance on distance (NOE signal $\sim 1/r^6$), the hydrogen pairs that are more than $\sim 5 \text{Å}$ apart will not be detectable in these experiments. Therefore, the disappearance of peaks in NOESY indicates that the corresponding atoms shifted together with the underlying amino-acids. In this case, this is triggered by the addition of calcium, which leads to 2 possible explanations similar to what was described above (direct or indirect effect of calcium binding).

Question 9:

Below is a small part of a PDB file from two different structures (A and B). Can you identify what is different in terms of atom composition? Considering the atom composition, which structural biology method could have these structures originated from?

Structure A:

ATOM	2270	N	THR	Α	364	37.053	61.679	55.135	1.00	45.18	N
ATOM	2271	CA	THR	Α	364	36.644	63.002	55.575	1.00	41.40	C
ATOM	2272	C	THR	Α	364	35.133	63.162	55.498	1.00	42.51	С
ATOM	2273	0	THR	Α	364	34.526	63.741	56.395	1.00	41.87	0
ATOM	2274	CB	THR	Α	364	37.351	64.100	54.751	1.00	39.60	C
ATOM	2275	OG1	THR	Α	364	38.772	63.954	54.915	1.00	36.65	0
ATOM	2276	CG2	THR	Α	364	36.957	65.486	55.238	1.00	38.36	C
ATOM	2277	N	GLN	Α	365	34.539	62.643	54.433	1.00	40.74	N
ATOM	2278	CA	GLN	Α	365	33.089	62.723	54.269	1.00	40.85	C
ATOM	2279	C	GLN	A	365	32.396	61.991	55.413	1.00	42.74	C
ATOM	2280	0	GLN	Α	365	31.415	62.482	55.961	1.00	44.33	0
ATOM	2281	CB	GLN	Α	365	32.673	62.090	52.945	1.00	42.48	C
ATOM	2282	CG	GLN	Α	365	33.070	62.906	51.716	1.00	43.48	C
ATOM	2283	CD	GLN	Α	365	32.670	62.179	50.442	1.00	41.36	C
ATOM	2284	0E1	GLN	Α	365	31.508	62.163	50.065	1.00	43.05	0
ATOM	2285	NE2	GLN	Α	365	33.623	61.540	49.808	1.00	42.06	N
ATOM	2286	N	ILE	A	366	32.898	60.810	55.761	1.00	46.58	N
ATOM	2287	CA	ILE	Α	366	32.307	60.043	56.861	1.00	46.20	C
ATOM	2288	C	ILE	Α	366	32.432	60.816	58.169	1.00	49.94	C
ATOM	2289	0	ILE	Α	366	31.492	60.866	58.955	1.00	50.63	0
ATOM	2290	CB	ILE	Α	366	33.008	58.673	56.996	1.00	43.57	C
ATOM	2291	CG1	ILE	Α	366	32.766	57.878	55.730	1.00	42.97	C
ATOM			ILE			32.495	57.932	58.231	1.00	42.86	C
ATOM	2293	CD1	ILE	A	366	33.601	56.636	55.618	1.00	42.38	C
ATOM		N	SER	A	367	33.582	61.441	58.413	1.00	51.38	N
ATOM	2295	CA	SER	Α	367	33.704	62.192	59.647	1.00	53.17	C
ATOM	2296	C	SER	Α	367	32.759	63.380	59.676	1.00	53.23	C
ATOM	2297	0	SER	Α	367	32.302	63.772	60.740	1.00	54.16	0
ATOM	2298	CB	SER	Α	367	35.167	62.637	59.903	1.00	54.34	C
ATOM	2299	OG	SER	A	367	35.575	63.694	59.063	1.00	56.93	0
ATOM	2300	N	SER	Α	368	32.457	63.962	58.512	1.00	50.86	N
ATOM	2301	CA	SER	A	368	31.548	65.107	58.465	1.00	48.18	C
ATOM		C			368	30.132	64.650	58.878	1.00		C
ATOM	2303	0	SER	Α	368	29.438	65.325	59.646	1.00	47.04	0
ATOM		CB			368	31.536	65.712	57.052	1.00	49.16	C
ATOM		OG			368	30.680	66.848	57.009	1.00		0
ATOM		N			369	29.710	63.503	58.361	1.00		N
ATOM		CA			369	28.404	62.945	58.712	1.00		С
ATOM		C			369	28.348	62.684	60.208	1.00		C
ATOM		0			369	27.358	63.001	60.862	1.00		0
ATOM	2310	CB	ALA	A	369	28.162	61.625	57.956	1.00	44.57	C

Structure B:

ATOM	1007	CA	LEU	A	97	-8.354	1.914	-3.884	1.00	0.22	C
ATOM	1008	C	LEU	A	97	-7.637	2.570	-5.058	1.00	0.21	C
ATOM	1009	0	LEU	A	97	-7.259	3.734	-4.992	1.00	0.25	0
ATOM	1010	CB	LEU	Α	97	-7.319	1.264	-2.966	1.00	0.25	C
ATOM	1011	CG	LEU	A	97	-6.284	2.248	-2.408	1.00	0.38	C
ATOM	1012	CD1	LEU	Α	97	-6.926	3.157	-1.381	1.00	0.52	C
ATOM	1013	CD2	LEU	A	97	-5.097	1.524	-1.799	1.00	0.62	C
ATOM	1014	H	LEU	A	97	-9.265	0.002	-4.103	1.00	0.23	H
ATOM	1015	HA	LEU		97	-8.885	2.676	-3.331	1.00	0.24	H
ATOM	1016	1HB	LEU	A	97	-7.837	0.802	-2.137	1.00	0.28	H
ATOM	1017	2HB	LEU		97	-6.796	0.500	-3.520	1.00	0.47	H
ATOM	1018	HG	LEU		97	-5.921	2.867	-3.215	1.00	0.46	H
ATOM		1HD1			97	-6.208	3.895	-1.056	1.00	1.11	H
ATOM		2HD1			97	-7.778	3.652	-1.820	1.00	1.18	H
ATOM		3HD1			97	-7.247	2.570	-0.533	1.00	1.02	H
ATOM		1HD2			97	-5.412	0.988	-0.913	1.00	1.03	H
ATOM		2HD2			97	-4.690	0.829	-2.517	1.00	1.29	H
ATOM		3HD2			97	-4.340	2.248	-1.529	1.00	1.25	H
ATOM	1025	N	GLU	Α	98	-7.467	1.814	-6.136	1.00	0.18	N
ATOM	1026	CA	GLU		98	-6.790	2.319	-7.326	1.00	0.19	C
ATOM	1027	C	GLU		98	-7.507	3.553	-7.874	1.00	0.17	C
ATOM	1028	0	GLU	A	98	-6.926	4.635	-7.956	1.00	0.20	0
ATOM	1029	CB	GLU		98	-6.735	1.227	-8.394	1.00	0.21	C
ATOM	1030	CG	GLU	Α	98	-5.724	1.491	-9.495	1.00	0.27	C
ATOM	1031	CD	GLU		98	-6.131		-10.405	1.00	0.88	C
ATOM	1032	OE1	GLU		98	-5.528	3.721	-10.296	1.00	0.96	0
ATOM	1033	OE2	GLU		98	-7.051		-11.226	1.00	1.87	0
ATOM	1034	H	GLU		98	-7.838	0.907	-6.144	1.00	0.18	H
ATOM	1035	HA	GLU		98	-5.783	2.591	-7.050	1.00	0.22	H
ATOM			GLU		98	-6.481	0.290	-7.921	1.00	0.27	H
ATOM	1037		GLU		98	-7.711	1.136	-8.848	1.00	0.31	H
ATOM	1038		GLU		98	-4.773	1.731	-9.045	1.00	0.85	H
ATOM	1039	2HG	GLU	Α	98	-5.625	0.595	-10.088	1.00	1.00	H

Answer:

If you look at the last column you will notice that Structure A does not have hydrogen atoms while structure B does. This could be caused by the methods used for structure determination or the achieved resolution. Hydrogens cannot be readily visualized by X-ray crystallography or cryoEM unless the resolution is <1.5Å.

Structure A could have been resolved by X-ray crystallography or cryoEM but not NMR. NMR structure determination is based on hydrogens and they would have been present in the PDB file.

Structure B could have been solved by either of the three methods, but in the case of X-ray crystallography and cryoEM this would require a very high resolution to be achieved. This structure actually came from NMR.